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ABSTRACT

Previously published methods of measuring and interpreting the Hall coefficient and
resistivity of semiconductors are summarized. The conventional and van der Pauw
methods of measurement are briefly discussed. Mobility is shown to be a function of
carrier scattering in a specific semiconductor. The equations for charge carrier con-
centration are developed for both extrinsic and intrinsic conduction. These equations
are then used as the basis for interpreting the measured experimental data, The analy-
sis of the data near the intrinsic range and the temperature range over which the experi-
mental measurements must be made are specified.
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A SUMMARY OF THE MEASUREMENT AND INTERPRETATION OF THE
HALL COEFFICIENT AND RESISTIVITY OF SEN\ICONDUCTORS
by D. Michael Stretchberry

Lewis Research Center

SUMMARY

A knowledge of the parameters of semiconductor material is important both for basic
materials research and for device development. An analysis of Hall coefficient and re-
sistivity data measured over a temperature range will yield several of these parameters,
such as the impurity doping concentrations, the impurity ionization energy, the band gap
energy, and mobility. The measurement and interpretation of the Hall coefficient and re-
sistivity are summarized from the available literature.

The conventional and van der Pauw methods of measuring Hall coefficient and resis=
tivity are briefly discussed. The van der ‘Pauw method was found to be advantageous for
small samples ‘ ‘ ' o ’

The mobility of semiconductors is also dlscussed It is r'elated to an energy-
averaged relaxation time, which is a character1st1e of a particular SCattering process and

‘a specific Semiconductor material' The different kinds of scattering are qualitatively
discussed. The factor o, which relates the Hall coeff1c1ent to the carrier concentra-
tion, is also a function of relaxation time.

The equat1ons for charge carrier concentratlon are developed for both extrmsm and
intrinsic conduction. They are found to be functmns of temperature and the various semi-
conductor parameters. These equations are then used as the basis for interpreting the
measured experlmental data. The method of mterpretatmn is to estimate the equatmn
parameters and then to calculate the carrler concentration at each temperature of inter-
est. The parameters are varled untll the calculated results match the experimental data.

The shape of the Hall coeff1c1ent and re51st1v1ty agamst temperature curves near in-
trinsic conductlon is shown so that :mtrmsm data can be interpreted correctly.

The temperature range over Whlch the experlmental measurements must.be made is
discussed. There are certam characterlstlc parts of the plot.of the logar1thm of the car-
rier concentratlon agamst remprocal temperature from which data must be included for
extrlnslc or ‘1ntr1ns1c 1nterpretat1on .



INTRODUCTION

The NASA-Lewis Research Center is currently engaged in a program which includes
the determination of the basic properties of semiconductor materials, particularly for
high-temperature applications. The ultimate objective is the development of devices that
operate at temperatures greater than 500° C (773 K). The measurement and analysis of
the Hall coefficient and resistivity as a function of temperature was picked as the method
for determining the desired properties. Although there are other ways of obtaining these
properties, this method is the most popular and has been used since the early days of
semiconductor research, The derivations of the pertinent equations and the methods of
‘analysis which result are well known (refs. 1and 2). But, it was realized that the liter-
ature does not emphasize the use of the derived equations for the interpretation of exper-
imental data and that no single source contains all of the required information, There-
fore, a literature search was started, and this summary report resulted, The purpose
of this report is to make available the collected information to the researcher who wants
to begin using the Hall coefficient and resistivity methods. More details of the methods
can be found in the references cited. This report has proved very useful to our program
and should be equally useful to others.

This report summarizes the use of the Hall coefficient and resistivity data as a func-
tion of temperature to obtain several of the electrical properties of semiconductors, such
as mobility, doping concentrations, the ionization energy of the major dopant, and the band
gap energy. The topics discussed are applicable to all semiconductors and not limited’ to
' those suitable for high-telxlperature use. The introductory sections are concerned with the
applicability of Hall coefficient and resistivity data (ref. 3), the measurement of these quan-
tities (refs. 1 and 4), and the charge carrier mobility in semiconductors (refs. 5to 8). Thes:
sections are included for a complete discussion of the problem of interpreting the data,

The applicability of the Hall coefficient and resistivity to a basic materials research
program and to a device development program is illustrated by specific examples. Sev-
eral of the parameters upon which device design depends are directly obtained from Hall
data. The conventional and the van der Pauw methods of measurement are briefly de-
scribed (refs. 1 and 4). The latter method is valuable because it is independent of the
shape of the sample and, therefore, is more easily applicable to small samples. The
mobility of semiconductors is discussed both as it illustrates the scattering processes
taking place in the semiconductor and in its role of influeﬁcing the relation hetween the
Hall coefficient and the charge carrier concentration (refs. 5to 8). The bulk of the dis-
cussion is qualitative because of the complexity of mobility theory.

The equations for the charge carrier concentration were developed both for extrinsic
and intrinsic conduction (ref. 2). For the extrinsic case they are a function of tempera-
ture, impurity concentrations, and the impurity ionization energy. The oversimplified



uncompensated case is considered f’u’stland then generalized to the more realistic com-~
pensated case. The charge carrier concentration equation for intrinsic conduction is
shown to be a function of the temperature and the band gap energy. '

The bases for ihterpreting'the measured experimental data are these equations. The
carrier cohcenfratibn is calculated at the required temperatures by using various sets of
estimated values of the constants. By cbmparing the calculated results with the experi-
mental data, those values of the constants that allow the best curve fit can be obtained.
Initially, the constants of the equations are estimated from the experimental data curves.
The characteristic shapes of the Hall coefficient and resistivity against temperature
curves in the temperafure range near intrinsic conductivity is illustrated (ref. 9). ‘Knowl-
edge of these characteristic shapes prevent errors being made in the interpretation of the
data in this region. | ’ .

Concluding the report is a brief dlscussxon of the relevant criteria for specu'ymg the
temperature range over which the Hall coefficient and resistivity must be measured.
Data must be obtained over a temperature range wide enough so that the methods of in-
terpretation that are to be developed can be used.

APPLICABILITY OF HALL COEFFICIENT AND RESISTIVITY

A knowledge of the Hall coefficient and resistivity of a semiconductor is important
‘both for basic materials research and device design. These measurements have proved
useful since the discovery of semiconductors, and their value is illustrated by specific
examples. , . _

The band gap energy and energy levels of the 1mpur1t1es are basic electrical param-
etérs of the material and are valuable in a semiconductor materials research. Also
valuable is information about the transport properties of the charge carriers which an
analysis of the mobility data against temperature gives. . ,

Semiconductor device design depends on several parameters, such as the 1mpur1ty
concentrations (doping levels) of each nnterlal, the physical dimensions of each part of
the device, the basic constants particular to the device material, the diffusion constants
(or mobilities) of the charge ca,rrier.s; the lifetime of the carriers, and the proposed op-
erating temperature of the device. A knowledge of the Hall coefficient and resistivity as
a function of temperature gives fhe designer the doping levels of the materials, the car-
rier mobilities (and therefore the diffusion constants), and the band gap energy. The dif-
fusion constants can be obtained directly from the mobilities by Einstein's relation, The
band gap energy affects the operating temperature of the device. The basic constants of
the material (such as the breakdown electric field or the dielectric constant) can usually
be measured. Normally, the physical dimensions are measured or calculated. The life-



time of the charge carriers is measured by methods not related to the Hall coefficient or
resistivity. Therefore, it is evident that a substantial amount of information (but not all)
is made available by an analysis of the Hall coefficient and resistivity.

‘The s1ng1e-3unct10n (diode) design equations are dependent, in part, on the doping
levels and diffusion constants. For example, the junction capacitance of an abrupt junc=
tion is proportional to the square root of the dopant density of the more lightly doped re-
gion.. The breakdown voltage is inversely pfoportional to this dopant density. The as-~
sumption is made that the doping atoms are completely ionized. The diffusion constant
appears in equations pertaining to current flow. Two examples are the characteristic
voltage-current equation of the diode and the expression for the ac impedance.

Other devices are made by combining junctions in certain configurations. There are
specific considerations for each type of device, but a common requirement is good junc-
tion design. ' For transistors, the current gain and the four pole parameters (Which spe-
cify the ac characteristics) are both functions of doping levels and diffusion constants.

1t is evident that both the basic materials researcher and the device developer are
interested in measuring and interpreting Hall coefficient and resistivity data. The in-~
formation obtained from these relatively simple electrical measurements is of much
value,

MEASUREMENT OF HALL COEFFICIENT AND RESISTIVITY

A brief description is given of both the conventional and van der Pauw methods of .
measuring the Hall coefficient and resistivity. References are cited to indicate where
comprehensive information about both methods can be found.

Conventional Method

The conventional Hall and resistivity measurements are made on constant-thickness,
single-crystal samples of semiconductor material, as shown in figure 1. The arms on
each side aré for ease in making contacts which will perturb the currentl'ﬂow through the
length of the sample as little as possible. A current I (in amperes) is passed the length
of the sample from A to B. If the voltage drop (in volts) from C to E is measured
and the dimerisions of the sample (in centlmeters) are: known, the resistivity can be cal- -
culated as follows: ‘ : ' ‘

VCEtW
B §

ohm-cm (1)
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Figure 1. - Bridge-shaped sample for conventional hall and re-
sistivity measurements, (B peroendicular to plane of crystal.)

where t, W, and L are particular dimensions of the sample as shown in figure 1. The
conductivity (which is the inverse of the resistivity) can usually be written as

n-type (electrons majority carrier):

@)

p-type (holes majority carrier):

~1_
7 == Ry

where n and p, are the equilibrium concentrations, By and p_. are the conductivity

mobilities of electrons and holes, respectively, and q is the electronic charge. If both

electrons and holes are present in equal or nearly equal concentrations, the conductivity
equation is the more general equation

0 ===qaMmky +Poky) (3)

O |-

Analogous equations can also be written for the Hall coefficient. If in addition to the
current I a known magnetic field B (in tesla) is applied perpendicular to the plane of the
crystal, a voltage Vu will be observed across the width of the crystal from C to D.

A measurement of VH will allow the calculation of the Hall coefficient RH' It is ex-
pressed in terms of measurable quantities as
Ry = VE' 10t

em3/C )
BI



The sign of RH indicates the material type (i.e., for RH > 0, the semiconductor is_ - -
p-type; for Ry <0, it is n-type). '
“The Hall coefficient is

n-type:

o
. RH =
noq
(5)
p-type:
_ o
RH =
poq

where o is a factor with a value usually between 1 and 2. The factor o is discussed later
(in the section MOBILITY AND ITS INFLUENCE). If both types of carriers are present in
equal or nearly equal concentrations, the Hall coefficient is more generally expressed as

2 2
= .g poup } nolJ-n (6)

% (o, by + i)

It can be seen from this equation that, if the Hall coefficient can be measured, the
carrier concentration can be easily calculated for the case where there is only one type
of carrier. When there are two types of carriers, the concentrations are not easily de-
termined. This is discussed later in the section INTERPRETATION OF DATA., The mo-
bility can be calculated when the Hall coefficient and resistivity are known, as is discussed
in the section MOBILITY AND ITS INFLUENCE, ‘

The material presented in this section can be typically found in elementary books on
semiconductors such as Shockley's (ref. 27).

van der Pauw Method

A method of measuring the Hall coefficient and resistivity of arbitrarily shaped sam-
ples has been derived by van der Pauw (ref. 4). Only four contacts instead of the five or
more normally required are necessary for both measurements. The most important ad-
vantage of this method is obvious: the sample no longer has to be machined to a particu-
lar shape. This is advantageous when only small crystals are available and machining
would waste a large proportion of the sample. The only restrictions of van der Pauw's
derivation are (1) the sample must be of constant thickness, (2) there must not be cavities

6



N\,
Sample thickness, t->

Figure 2, - Arbitrarily shaped van der Pauw
sample with four electrical contacts (a, b,
¢, andd). (B perpendicular to plane of
crystal,

in the crystal, and (3) small contacts must be made as close to the perimeter as possible.
A van der Pauw sample is shown in figure 2.
The resistivity equation derived by van der Pauw is

R
__nt ab, cd -
"o (Rab, cd * Rbc, a2t E_z._ ohm-cm 7
be, da

The function f is given by van der Pauw in graphical form (see fig. 3). The quantity
Rab, cd is defined, for example, to be the ratio of the voltage measured from d to ¢ to
the current flowing in a and out b. Other such ratios are defined similarly and are also
expressed in ohms.

The Hall coefficient expression defined by van der Pauw is

_t 4 3
Ry -——B-ARac, pg<10" em /C (8)

L0

ft Rab, cd/ Rbc, da
(=)

| -
1 10 10 o 102
Rab, cdf Ri, da ‘
Figure 3, - Function used for determining resistivity of sample, plotted as function of
Rab, cd/Roc, dar Y




where ARa c.bd is the difference between Ra c.bd without the applied magnetic field and

with the field’, The sign of R’H indicates the ty’pe of the semiconductor.

Influence of Thermomagnetic and Thermoelectric Effects

Thermomagnetic and thermoelectric effects can influence the Hall voltage. Some,
such as the Seebeck, Nernst, and Righi-Leduc effects, can be eliminated through averag-
ing the data obtained by reversing the current direction. Another, the magnetoresistance
effect, is eliminated through averaging the data obtained by reversing the magnetic field
(refs. 1 and 7). Finally, the Peltief,—Nernst and Ettinghausen effects cannot be removed
by data averaging but usually are small enough to neglect (ref. 7). However, their in-
fluence should be estimated to verify this assumption.

Suggested References

A popular book which deseribes nearly all aspects of the Hall effect is that by Putley
(ref. 1). The conventional measurement of Hall coefficient and resistivity, as well as the
general equipment that is required, are discussed. The thermomagnetic and thermoelec-
tric effects and their influence on the Hall coefficient are described in detail.

The original paper by van der Pauw (ref. 4) gives the basic information on his
method of measurement. In reference 7 van Daal extends the discussion of the van der
Pauw method and also describes the influence of the thermomagnetic and thermoelectric
effects.

MOBILITY AND ITS INFLUENCE

Several kinds of mobility are used in the semiconductor literature. They are seldom
differentiated well. Mobility is defined herein since it is used often in this report. When a
semiconductor is subjected to an electric field, the charge carriers are given a drift ve-
locity. The drift velocity is proportional to the electric field. The constant of propor-
tionality is defined as the mobility u. The basic types of mobility depend on whether the
carriers are excess minority carriers or majority carriers in equilibrium (ref. 10).

The mobility for the former case is called drift mobility and for the latter case is called
conductivity mobility. The distinction between the two is usually not significant. But,
precisely speaking, the conductivity mobility 1is the appropriate mobility to use in all
cases in this paper. The mobility of electrons is generally different than that of holes.



It is possible to have electron and hole conductivity mobilities, as well as electron and
hole drift mobilities. i

There is in general use another quantity called the Hall mobility. K is a type of‘con-
ductivity mobility and is defined as

"n

P

by 9)

If equations (2) and (5) are used, it can be shown that the Hall mobility is related to the
conductivity mobility by

By = QMK (10)

Interest in mobility as it relates to this report is twofold. First, the analysis of
mobility as a function of temperature yields information about the scattering processes
which influence the movement of charge carriers in the semiconductor. Secondly, a is
obtained in the study of mobility as a function of the scattering processes and of the par-
ticular semiconductor band structure.

Relating Mobility to Scattering

The relation between mobility and scattering shows that the mobility is directly de~
pendent on the energy average of the relaxation time 7. The energy average of 7 is de-
noted as (7). The relaxation time is closely related to the average time between col-
lisions of the charge carriers. They are equal only when 7 is not a function of energy.
(See Smith (ref. 5) for more details.) The relaxation time is introduced as the charac~-
teristic time governing the establishment of equilibrium of the initially disturbed carrier
concentration. The relaxation time as a function of energy (or, more generally, velocity)
must be calculated for the specific scattering process and then energy-averaged to ob-
tain the mobility. The factor o also depends on (7).

The derivation is based on the following assumptlons

(1) Spherical constant-energy surfaces in k—space (k—space is related to momentum

space by a multiplicative constant)

(2) An n-type semiconductor with a parabolic conduction band

(3) A nondegenerate semiconductor

(4) Relaxation time 7 as a function of energy only (isotropic)

The first assumption presumes that the properties of the semiconductor (such as conduc-
tivity and effective mass) are isotropic. The second assumption allows the usual density-

9.



of-states expression to be used in the derivation (see the section DEVELOPMENT OF
CHARGE CARRIER CONCENTRATION EQUATIONS). The third assumption allows the
use’of Boltzmann statistics in place of Fermi-Dirac statistics. Also assumed is an elec-
tric field in the x-direction £ % This derivation appears in Smith (ref. 5), Putley
(ref. 1), van Daal (ref. 7), and Blatt (ref. 6).

The result is an equation for J < the current density in the x-direction, as a function
of (1), which yields the results for mobility and the factor @, This current density
equation is

2
nq-£_ (7
I, = __°__._X_<_Z_ (11)
mp
where m# is the effective mass of electrons and (7) is defined to be
0
(1) = 4 7'63/ 2 exp(-€)de (12)
3711/2
where € is
E-E
€ = ¢ (13)
kT

and k is the Boltzmann constant, T is temperature, E is energy, and E c is the energy
of the bottom of the conduction band. The average drift velocity of the electrons is given
by

J
(V) = === (14)
n.a

This relation plus the definition of mobility

n
£X

(15)

allows the mobility to be expressed in terms of the energy-averaged relaxation time

»
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by =X as)

n m#
The definition of conductivity is
Xy =-§§ (17)
b4
Thus, it can be expressed as
o=nqu, (18)

and equation (2) is verified.

The mobility has now been expressed as a function of the energy-averaged relaxation
time. To calculate the dependence of mobility on any scattering process all that need be
done is to determine the characteristic 7 for that type of scattering and calculate its
average by use of equation (12). However, this is difficult to do.

If the same type of calculation as shown in equations (11) to (18) is carried out, but
including the effect of a magnetic field on the charge carriers, the result for the factor
o is

a={T) (19)

Generalizing Mobility

The equations for p and a interms of (7) and (72) will be modified when the
constant-energy surfaces are not spherical or when there are several equivalent energy
minimums in the conduction band. Consider first the case of nonspherical constant-
energy surfaces with a single energy minimum in the conduction band at k= 0. (The n
subscript will be dropped from the mobility symbol. )

The effective mass is a function of the shape of the energy bands and therefore, in
general, is a tensor quantity. It is scalar only when the constant-energy surfaces are
spherical. However, when they are not spherical, a set of axes can be chosen to make
the effective mass tensor diagonal. The applied electric field then can be broken up into

-its components along the chosen axes. k

11



By an extension of this derivation, a set of equations similar to equation (11) results:

2 ™
g 2ot (M Ex
X *
my
2
n.q (7)€
0
y= — (20)
my
2
7 - noq (T)J:f’z
Z m*
3

where mi‘, m;, and mg are the diagonal elements of the effective maSs tensor, and

therefore

N

H1=';<n'7%

" | .
m3J

The conductivity is also a diagonal tensor in terms of these axes and its components are
written as

01 = DoaHq
Og =D Aly > (22)
Og = no‘”” 32

.- Now consider the existence of several equivalent energy minimums in the conduction
band.. If there are M -minimums, there are n o /M electrons per unit volume in each.
Assume M =6, which is the case for silicon (see fig. 4). The sum over all the electrons

12



Figure 4. - Constant-energy surfaces in 'E-space for energy just above
hottom of conduction band in silicon. Minimums are at centers of el-

lipsoids.

(which is the sum over all six minimums) will allow the current density to be given by a

symmetrical expression of the form

—

x
_1
J.= E noq(2u1 + 209 + 2p.3)£x
21
Jy = —é— an(Zu1 +2pg + 2“‘3)‘537
_1
J, = E noq(2pL1 + 2p.2 + 2u3)£ZJ

(23)

Thus, all the diagonal terms of the conductivity tensor are equal, and it can be written as

1
o= 3 Doy + g +ig)

If the conductivity and conductivity mobility are written as

(24)

13



o =n.qu

(25)
p=UD
m;}; _
the conductivity effective mass and conductivity mobility are defined as
\
1 _i(1 1 1
* %
mg 3 \mj mg m3
” (26)
po==(ug + 1y +1ig)
./

Note that the constant-energy surfaces for silicon are ellipsoids. Therefore, two of
the effective masses in equations (26) will be equal (mi‘ = m’z" = m,’i‘,) because of the sym-
metry of the ellipsoids, and will be different from the third (m§ = m"I: . Equations (26)
then reduce to

<
11 _L+_2_>
m;"l 3 mi m,’{‘
> @7)
u——(uL+2uT)
vy

The conductivity effective mass and conductivity mobility are defined because the
equations in which m;‘, m;, mg, Bys Bo» and pu g appear can be written more conven-
iently with mt"l‘ and p. It must be remembered, however, that mﬁ and p depend on
the band structure of the semiconductor. Thus, equations (26) and (27) are not general
equations for all band structures. A Hall effective mass (which is analogous to the con-
ductivity effective mass) can be defined for use with the Hall mobility..

The factor a is also more complicated for the case when there are several equiv-
alent energy minimums in the conduction band and nonspherical constant-energy surfaces.
If the number of equivalent minimums is six, for example, o is given by (ref. 5)

2 ¥ *
o~ QZ) 3(mi +mJ + mg) 28)
GO S S B
m* m* m* 17273
1 2 3

14



If the constant-energy surfaces are ellipsoidal, m} = mJ m,"I‘, and m%‘ =mJ, a be-
comes

o= (7'2) 3C(C +2)

(29)
2 @c +1)2

where C is defined as mi/m,’f.g

Scattering Processes

The derivation of a relaxation time for a particular type of scattering is not presented
because of the complexity of the calculations. The different types of scattering processes
are, however, qualitatively discussed. In general, the mobility will be determined at low
temperaiures by crystal structure defects and impurities, and at high temperatures by
vibrations of the lattice. Table I lists the different possible types of scattering processes
and the factor @ corresponding to them. The values for a are from van Daal (ref. 7).
They include only the (72) /{7y part of a. The effective mass part is assumed to be
equal to 1. References are also listed in table 1.

Lattice vibrations are of two types. Acoustic vibrations are those in which an atom
of a crystal and its nearby neighbors vibrate in the same direction (in phase). Optical
vibrations are those in which two adjacent particles move in opposite directions (out of
phase). Transverse and longitudinal vibrations can exist for both types of lattice vibra-
tion. Figure 5 illustrates acoustic and optical vibration for both the transverse and lon-
gitudinal cases.

Acoustic and optical scattering differ for polar and nonpolar crystals (see table I).
Acoustic scattering for nonpolar crystals is called acoustic-mode scattering and for polar
crystals is called piezoelectric scattering. Optical scattering for nonpolar crystals is
called optical-mode scattering, and for polar crystals it is called polar scattering. Sili-
con and germanium are nonpolar crystals, and silicon carbide is polar, Whether a crys-
tal is nonpolar or polar is determined by whether the crystal's bonds are polar or non-
polar. A polar bond will have the center of negative charge offset from the center of pos-
itive charge. Ionic bonding is polar, but covalent bonding can be either.

Early calculations of mobility considered only acoustic-mode scattering, This lead
to a mobility which varies as T'3/ 2. The result was obtained by Bardeen and Shockley
(ref. 11). Exceptions were immediately found to the predicted T_3/ 2 variation. It was
determined that the band structure would have to be taken into account. Herring (ref. 12)
developed the transport properties for the ""many-valley'' model for which the band edge
occurs at a number of equivalent points in k- space and for which the surfaces of constant

15



TABLE 1. - SCATTERING PROCESSES, VALUES OF O!a, AND REFERENCES

Types of scattering Constant relating | Reference
Hall coefficient
and carrier con~
centration,
o

Acoustical mode (acoustical lattice vibrations of non- 3r1/8 11
polar crystals)
Piezoelectric (acoustical lattice vibrations of polar 1.10 20, 7
crystals)
Optical mode (optical lattice vibrations of nonpolar | ---~e-meweu- 21, 22
crystals)
Polar (optical lattice vibrations of polar crystals) 1.10to 1. 34 23, 7
Intervalley | emmeme——e—— 12
Tonized impurity 1,18 to 1.70 24, 25
Neutral impurity 1.0 13
Combination of acoustic and ionized impurity scattering| ----------- 24, 26
Structure defects 1.34 t0 1.40 1
Electron-hole |  eeeseemeee- 1
Electron-electron ] seeeeeeeae 1

1t is assumed here that the effective mass part of « equals 1,

b.Values of a are from van Daal (ref. 7).

Direction of propagation

—

by
O O 0O-0-

Acoustic-transverse

Acoustic-longitudinal

i
O C? =0 O~

Optical-transverse

Optical-longitudinal

Figure 5. - Acoustic and optical vibrations for both
transverse and longitudinal cases. Direction of

wave motion is assumed to be to the right.
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energy are multiple ellipsoids centered on each of these points. The special case of sili-
con is illustrated in figure 4. Since the energies of conduction electrons will be within
approximately kT of each other, those electrons which are scattered without a change in
energy will be represented by another point on the constant-energy surfaces of approxi-
mate thickness kT. When the scattered state is on a different ellipsoid than the original
(such as A - C), this is called intervaliey scattering. Intravalley scattering (A — B) oc-
curs from one state to another state on the same ellipsoid. Intravalley acoustic-mode
scattering still leads to mobility variation as T'3/ 2, but intervalley scattering can cause
a more rapid temperature variation. Intervalley scattering is usually considered as a
separate type and not just a variation of lattice scattering.

The presence of impurities in the semiconductor also contributes to the scattering of
the charge carriers. Scattering by ionized impurities yields a mobility which varies as
T3/ 2 (refs. 24 and 25). An expression for the mobility which results from neutral impurity
scattering was obtained by Erginsoy (ref. 13). It is not temperature dependent.

Putley (ref. 1) outlines a method of separating the lattice scattering from impurity
scattering. A plot of the measured mobility at a fixed temperature for a number of sam-
ples against impurity concentrations tends to an upper limit, which indicates the lattice
mobility. Putley states that application of this method to materials in their early states
of development has led to incorrect results because the total impurity content is reliably
known.

Electron-electron, electron-hole, and structure defect scattering processes are
briefly discussed by Putley and in detail by Blatt (ref. 6). Electron-electron scattering
can influence other types of scattering and thus reduce the mobility.

Suggested Reterences

An excellent reference is chapter 5 of reference 5. Smith gives a well-organized
discussion of transport phenomena and scattering mechanisms. Blatt (ref. 5) discusses
the theory of mobility for both metals and semiconductors. Putley (ref. 1) describes
qualitatively and simply the scattering involved in nonpolar semiconductors and tabulates
the mobility equations and gives references to their origins (pp. 146 and 147). Informa-
tion specifically concerning silicon carbide is given by van Daal (ref. 7), and a good gen-
eral discussion of mobility theory is presented by Ziman (ref. 8).

DEVELOPMENT OF CHARGE CARRIER CONCENTRATION EQUATIONS

A measurement of fhe Hall coefficient is a measurement of the charge carrier con-
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centration at a specific temperature. Thus, if the carrier concentration equations can be
developed as a function of temperature and other variables of interest, valuable informa-
tion can be deduced from the Hall coefficient data. These equations are written for both
the extrinsic and intrinsic cases. The notation and most of the material used herein are
taken from chapter 3 of reference 2. Note that Ev’ Ec’ and Ef represent various en-
ergy levels in the usual energy band scheme. However, E d and E a represent the en-
ergy difference between these energy levels and the nearest band edge, that is, the con-
duction and valence bands, respectively, and Eg is the energy difference between the
conduction and valence band edge.

Extrinsic Equations

Impurity level spin degeneracy. - Consider a semiconductor with Nd donor impurity
atoms per unit volume which gives up one electron per atom. Each atom will be either
ionized or neutral. Since the Fermi-~-Dirac distribution function f is the probability that
any state of energy E will be occupied by an electron, the ratio of ionized donor atoms
to neutral donor atoms is

N..
Ndl —_ 1 - f - E 1 E (30)
f +E, -
dn exp f d c
kT

where E d is the donor ionization energy, E £ is the Fermi level, and f is the Fermi-
Dirac distribution function:

1
E-Ef

f(E) = (1)

1 +exp
kT

Equation (30) is not quite correct. The effect of impurity level spin degeneracy must
be taken into account by multiplying the denominator by 1/8. TFor the case of Nd donor
impurities usually B = 1/2, because the energy level of each atom can be occupied by an
electron in two ways. For acceptor impurities B = 2, most likely. Other effects can in-
fluence the statistical weights of the neufral and ionized conditions of the atoms. There-
fore, B is used as a general stbol to include all the effects. A brief discussion of the
effects that influence B is presented by Blakemore (ref. 2, p. 118).
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Since N 4= N di * N an’ equation (30) can be rewritten to give the density of neutral
donors:

Ng

N, = (32)
an E,-Eq- E;
1+8exp

- kT

This equation is basic to the developments that follow.

Model for single monovalent donor impurities. Figure 6 illustrates the semiconduc-
tor model to be considered first, an n-type semiconductor with monovalent, uncompen-
sated donors of density Nd‘ It is impossible to have a semiconductor which would com-~
pletely satisfy this model. However, some important equations can be developed at this
point and easily generalized later.

The concentration of electrons excited to the conduction band is the first quantity that
must be calculated. T is equal to the integral from Ec to infinity of the product of the
Fermi-Dirac distribution function and the density of electron states g(E):

n, = [; 1(E)g(E)AE (33)
c

More precisely, g(E) is the density of states per unit energy interval in the conduction
4

E-p————————— Ny donor fevel

Energy, eV

Figure 6. - Model of n-type semiconductor with
monovalent impurities and no compensation,
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band and is given by Blakemore as

o\ 3/2
6@ - 4| —2) (- 5)"/2 (34)
h

where h is the Planck constant. Equation (33) is then calculated to be -

n, = NCFI /2 () (35)
where
2mm¥ET 3/2
N, = 2 — (36)
h
and
E £ Ec
kT

and F1 /2(77) is a Fermi-Dirac integral of order 1/2. Since Nd =N ai t Ndn and
n, = Ndi’ the expression for n, becomes

N
_ d
n, = (38)

1+ B'l exp(ed +1)

where

_EBq
€q=—
kT

The quantity Nc is the effective density of states in the conduction band, and there-
fore m;';, which appears in Nc’ is the density-of-states effective mass. It is not, in
general, equal to the conductivity effective mass defined in the section MOBILITY AND
ITS INFLUENCE. But like the conductivity effective mass, it is a function of mi‘, m3,
and m§ For materials having symmetric conduction bands, the density-of-states ef-
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1/ 3. There is a corresponding effective density of states in the
valance band Nv and density-of-states effective mass for holes m#*,

Equation (38) simplifies if conditions are nondegenerate. If this is so, Fl /2(17) and
f(E) are approximated by exp(n). A semiconductor is nondegenerate if the doping im-
purity concentration is not too high, that is, if Ef is several kKT less than E c In a de-
generate system, only a small percentage of the electrons are capable of changing their
energies in infinitesimal amounts. The system considered herein is nondegenerate in that
every electron has a full opportunity to readjust to thermal change. Therefore, Fy /2 )=
exp() =n /N o> and equation (38) becomes

i i Fpn *m *
fective mass is (m1m2m3)

2Nd
n_ = ' , (39)
o 1/2
4Nd )
1 +]1 4+ — Jexp(e
BN d

C

At low temperature (where kT << E d) equation (39) can be approximated by

~ (BN N 1/2 exp(_EQ_> (40)
2KT

Plotting In n, asa function of 1/T results in a curve with slope E d /2k. By measuring
this slope, E q can be approximated. Because of the dependence of N on temperature
(NcaT3/ ) the actual slope is not exdctly E d /2k. Note that equation (40) can be applied
only if

(1) Nondegenerate conditions apply.

(2) The low-temperature condition prevails, that is, n, << Ng.

(3) Little or no compensation is assumed (as for this model), that is, N, << n,

A knowledge of the temperature dependence of 7, as well as of n, , for thls model is
valuable. Knowing 71 allows the data interpreter to determine whether the nondegenerate
approximation can be used to simplify the carrier concentration equation. If, at a partic-
ular temperature, 7 is less than -2 or -3, the semiconductor is nondegenerate at that
temperature, and the simplified equation can be applied. This is the same as saying that
the Fermi level E £ is 2 kT or 3 kT below the conduction band energy.

The variable 7 can be written for nondegenerate conditions as

n=—t €2 (41)
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Substituting equation (39) into equation (41) results in

9 1/2
Ne Ne Ne

n = ~In + +1- exp(e q) (42)
2Ny 2N BN

For large T (where kT >>E d), the term containing the exponential can be neglected.
Thus, equation (42) reduces to

N
n = ~In{ £ (43)
Na

For small T (where kT << E d) , the exponential dominates, and equation (42) becomes

E N

= e - = In| ——

2kT 2 \pN

It is apparent that 7 as a function of T starts low, rises to a maximum Tm at
temperature Tm, and goes down again, as shown in figure 7. Therefore, if 7 m is less
than -2 or -3, the semiconductor is nondegenerate at all temperatures. There will be
cases when the semiconductor is degenerate throughout a certain temperature range.
This temperature range is centered around the temperature Tm‘ Thus, it is helpful to
know not only N but Tm as well. Blakemore has developed a way of obtaining M
and T o’ and his results are summarized in the following paragraphs.

{
I

Variable n, - £kt
=3
3

Temperature, K

Figure 7. - Nominal temperature
dependence of variable 1 for
model of figure 6. (ny, is not .
necessarily less than 71 =0 in
all cases. )
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The maximum Ny €30 be calculated as a function of a quantity Z, which is itself a
function of N & B, mr*;, and E d but not of T. Taking the derivative of n from equa-
tion (42) with respect to T and setting the result equal to zero yield the equation

3/2
27Tm / _1/2

-2
Z = 12 »20 €am Regy - 3)7° expl-€ g ) (45)
h
where
\
ey =0
kT
> 46)
m /2 (
Z - Ndﬁ_l (o]
miBs)

The quantity m o is the mass of the free electron.

A universal plot can now be made of ¢ dm against Z. When this plot and a knowl~
edge of the variables of a specific semiconductor sample which make up Z are used, the
temperature at which 7 is maximum can be determined and then Tm itself. This plot
is presented in figure 8.

When equation (38) is differentiated and the condition dn/dT = 0 is imposed, a
simple relation is obtained, which when combined with the root of equation (45) leads to a
universal graphical relation of Tm to Z. This allows T to be obtained directly from
the curve if Nd’ B, m;';, and Ed of a specific semiconductor sample are known. This
graph is figure 9. Figures 8 and 9 are reprinted with permission from F. S. Blakemore,
Semiconductor Statistics, copyright 1962, Pergamon Press Inc.

If there is degeneracy over part of the temperature range, equation (38) cannot be
solved simply (i. e., Fy /2(77) # exp(n)). If n<1.3, F1 /2(17) can be approximated by
(C + exp(-n)) ~, where C = 0.27 and the electron concentration is calculated to be

2N.N
n = d e (47)
(N, +CNy) + [(Nc - CNy" + 48 "NgN, exp(ed)]

For 7> 1.3 numerical or graphical methods must be used to solve equation (38).
Blakemore indicates the procedure to be used.
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Figure 8, - Ratio of donor ionization energy fo temperature Ed/kT {when 7 = 1) as func-
tionof Z,
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For B =1/2

ol Lt v vk e oy

Z, cmfey312

Figure 9. - Variable 7, as function of Z for impurity level spin degeneracy of 1/2. With
any other value, curve should be raised by amount equal to 1n(2p).



Model for partly compensated donor impurities. ~ This model assumes a donor den-
sity Nd compensated by a net density of acceptors Na’ as shown in figure 10. This
model also is not completely correct; several influencing effects are discussed in the fol-
lowing sections.

Generally, the concentration equations are similar to those for the simple model, but
they take into consideration the presence of acceptor impurities which cause the semicon-
ductor to be compensated. It is assumed that the donor energy levels lie at an appreciable
level below the bottom of the conduction band and that the net acceptor levels lie even
further away than the donor levels. The Fermi level E £ is assumed to be well above the
acceptor energy levels.

The acceptors, however, acquire electrons from the donor impurities. Thus, there
are Nd - Na electrons to distribute between the donor levels and the conduction band.
The number of ionized donors varies from Na at low temperatures to Nd at high tem-~
peratures, but n, can become larger than Nd ~ Na only if the falling Fermi level ap-
proaches ancther set of impurity states or its intrinsic position.

Obviously, for this particular case, the density of conduction electrons n o plus the
density of electrons lost to the acceptors Na plus the neutral donors N dn equals the
total number of donors (i. e., n, +N, +N; =N d). Therefore, when equation (32) is
used,

N
n +N_= d (48)
[¢] a -1
1+B7" expleg +1)

) s

E- g L ————————— Ng donor level

Energy, eV

00000000 N netaceptor
level

Figure 10 - Model of compensated n-type semicon-
ductor with monovalent donor impurities.
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In general, when n - must be written as

nO = NcFl/Z(n) (35)
and A is defined as
2(2”m§Ed>3/2
2
A=_\ N (49)
Ng
equation (48) becomes
N &
1 A _p w2 (50)
1 3/2 /277y
1+8 exp(€d+n) €4 d

When n=1.3, Fy /2(71) can be approximated by (C + exp(—n)‘v)'l, and equation (50) re-
duces to

n = 2N (N - Ny
0

(51)
}1/2

2
[Nc + C(Iw‘[’;1 - Na) + B'lNa exp(ed)] + {[Nc - C(Nd - Na) +ﬁ'1Na exp(ed)] + 4B"I(Nc + CNa)(Nd - Na)exp(ed)

When the Fermi level is several kT below the conduction band (i.e., 7 =-2 or -3),
Fy /2(71) ~ exp(n), and equation (50) reduces to

2(N, - N
n = ( d a) , (52)
0 1/2
" expleg)| +4[1 + 2 exp L ’
1 4+ —=expley)]| + + —— exple —— (N, - N_)exp(e
BNc d BNC P d) + BNC( d a) p( d)

Both equations (51) and (52), when N, goes to zero, reduce to equations (47) and
(39), respectively, which were originally derived for the uncompensated model.

When compensation is small, there exists a temperature range where
N, << n ) << Ny- Equation (52) becomes, in this case,
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E

1/2 d
n_= (AN .N)) exp|- —~ (53)
(o] cd KT
which is the same as equation (40). At lower temperature, however, when n, = Na’
equation (52) becomes
N,-N E
n, = BN |42 )exp(- 9 (54)
N, kT

Note the dependence of Inn o O 1/T. The dependence is twice as large for equation (54)
as for equation (53). Since Inn o 252 function of 1/T is often plotted to. determine E d
from the slope of the curve, care must be taken to differentiate between these equations.
When compensation is large, equation (53) is never valid. For heavy compensation,
equation (52) becomes, at all temperatures,

N.-N
n =4 T (55)

N,
1 +—= exp(e d)
AN,

Obviously, the equations for single monovalent and partly compensated donor impurities
must be applied cautiously to a real semiconductor. Forethought is needed to prevent
serious errors when the experimental data are interpreted.

Model for compensated semiconductor with two monovalent donor impurity levels. -
This model assumes two monovalent donor impurity levels which are compensated by a
net acceptor density. The model is illustrated in figure 11. The concentrations of the
two donor levels are denoted as Ndl and Nd2’ respectively, and their energies are
written as Edl and Edz with E d1 > Ed2'

The acceptor impurities trap Na electrons so that the net density available is
Ndl + Ndz - Na' The relative magnitudes of Ndl’ Nd2’ and Na must be considered,
while remembering that Edl > E a2 is assumed. It is found that only two types of be-
havior result: Na > Ndl and N a < Ndl’ i Na > Ndl’ there will be no electrons at the
N d1 level at all temperatures. This corresponds to a semiconductor which has a single

type of donor impurity with an effective compensating density of Na - N at Therefore,
the anailysis for partly compensated donor impurities is applicable.

When N, <Nyq, the N qo levels will be full, and N4,y - N, electrons will be in the
Ni1 level states at 0 K. As the temperature rises, the N a1 donors start giving their -
electrons to the conduction band. When all the Ndl donor levels are empty, the elec~
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Figure 11, - Model of compensated n-type semicqqductor
with two independent monovalent donor impurities,
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Figure 12. ~ Action of electron concentration as function of tempefature for compensated
semiconductor with two independent monovalent donor impurities.

tron concentration levels off. As the temperature increases it begins to rise until all the
Ndz electrons are ionized, and then it levels off again. The electron concentration as a
function of temperature is shown in figure 12.

To discuss the model mathematically, N di is defined at the jth monovalent donor
impurity (where there are a total of M different types) with ground state binding energy
Edj' Since the density of ionized donors is equal to the conduction band electron concen-
tration plus the density of acceptors, the following equation holds:
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N,.
N +n dj

n

(56)
1461 exp(n + €4;)
= i i

And if the semiconductor is nondegenerate, exp(n) can be approximated by n o /N ¢
Equation (56) can then be analyzed.

There are other extrinsic doping models that are important but will not be presented.
Some of these include multivalent doping atoms, amphoteric impurities (i. e., an impurity
that can act either as an acceptor or a donor), and those cases influenced by lattice de-
fects. For more information about these types of semiconductors see Blakemore (ref. 2).

Influence of excited states on carrier concentration equation. - An analogy exists be~
tween the energy level structure of atoms and the energies that a donor impurity may ex-
hibit, Not all donor electrons have an energy at the level E e E da Rather this level is
the donor electron ground state, and the donor electron could be in an excited state at an
energy above the donor ground state. Figure 13 depicts an extended n-type compensated
semiconductor problem, which is considered in the following paragraph.

Let r denote the energy state. For example, r =1 is the donor ground state, and
r =2 isthe first excited state, Then each state has a spin degeneracy B;l and lies at
energy EI_1 = kTer1 above the ground state. The donor can bind an electron in a state
only if it does not also have an electron bound in another state.

Conduction band

C e e e — r=3
Donor excited states
__________ r= 2

Energy, eV

[ P P r=1
¢ Donor ground state

O O O O O O O Ny netacceptor level

Figure 13, - Compensated n-type semiconductor of figure 10
but including donor excited states.
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The resulting equation for the nondegenerate 'case is

2(N, - N
Ty = bl 1/2 (57)
N, N 2 4N, -N)
1+ exple ) (1 +S)| + <1 + —2- exple )1 + §)| + ——2 exple)(1 + 8)
NCBI NcBI Ncﬁl

where

Z‘x’ B
S = 1 exp(-€,.¢) (58)
Py

S r=2

Equation (57) is quite similar to equation (52). If S =0, they would be identical. Thus,
the equations previously derived are influenced by the action of excited states in a simple
manner. To proceed from one equation to another the term 1 + S must be appropriately
substituted. Note that at low enough temperatures (where kT << Erl)’ S<L1 and
equations (57) and (52) coincide. At high temperatures, n,=N,. Thus, only at interme-
diate temperatures does S affect n, significantly.

Other factors which influence carrier concentration equations. - It has been found
that the ground-level donor energy is sometimes split into two levels which are A apart.
This effect is a function of energy band structure. Long and Myers (ref. 14) have meas-
ured A for a specific case. The splitting influences the electron or hole concentration,

but the details and the degree of influence are not discussed herein.

Strain (ref. 15) also affects the structure of impurity states in most materials as
well as a magnetic field (ref. 16). However, except for large strains or large magnetic
fields, these effects are negligible.

Intrinsic Equations

A semiconductor displays intrinsic conduction when the temperature is high enough
that the carrier concentration due to thermal excitation from the valence band is larger
than the concentration due to excited impurities. Analysis of data in the intrinsic region
yields the band gap of the semiconductor.

Before the carrier concentration equation is written, clarification is needed concern-
ing the total hole density P- The equation for total electron density n " has already
beenwritten. The hole density can be expressed similarly as
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Py = NVF]_ /2("€g'77) (59)

where

2rm*kT 3/2
N, =2{—FE (60)

h2

and € g is the band gap in units of kT(e g™ E g /KT). The hole density p, is the integral
over energy from minus infinity to the top of the valence band E v of the product of the
density of states and the Fermi distribution for holes, which is 1 minus the Fermi distri-
bution for electrons.

In most cases (especially wide-band-gap material) the nondegenerate approximation
is valid because the gap is a fairly large multiple of kT and the Fermi level is near the
center. Since in an intrinsic semiconductor n, =n = pg (where n, is defined as the
intrinsic concentration of holes and electrons),

n; = N, exp(n) = N exp(-eg-n) (61)

The intrinsic carrier concentration equation is obtained when the extreme left side of
equation (61) is multiplied by n;, the extreme right side is multiplied by N, exp(n), and
the square root is taken.

E
n. = (NN )2 exp(-—& (62)
1 vV C 2kT
Another basic equation can be derived from equation (61):

2
n,p, = n; 63)

INTERPRETATION OF DATA

Measured values of Hall coefficient and resistivity against temperature are usually
displayed in a standard way. The carrier concentration n o is calculated from the Hall
coefficient, and then the natural logarithms of n, and p are plotted as a function of in-
verse temperature, as in figure 14. (An n-type semiconductor is assumed throughout
this section.) Each part of the curve on each plot yields a particular bit of information
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Figure 14, - Typical plots of natural logarithms of carrier concentration and of resis-
tivity as function of inverse temperature, These plots only indicate general shape
of curves,

about the semiconductor. The general shapes of the curves are shown in figure 14. Note
that the slopes of the curves at both extremes of temperature are proportional to either
Eyq or E g’ In the extrinsic region, the carrier concentration rises as the temperature
increases because more and more electrons are being excited into the conduction band.
When all of the available electrons from the doping atoms are ionized, n, -will reach a
constant value (N d- Na if compensated). As the temperature rises, hole-electron pairs

are generated as the thermal energy available becomes comparable to Eg. Thus, n, in-
creases rapidly.
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Equations have been developed for each part of each curve in figure 14. The inter-
pretation of the data involves the choosing of the correct parameters in the equations.
The correct parameters, when substituted in the appropriate carrier concentration equa-
tion, will match the calculated results to the experimental data. The correct parameters
are obtained by an iterative process.

Extrinsic Data

Several extrinsic equations have been developed in the previous sections for degener-
ate and nondegenerate semiconductors. Some estimate of the degeneracy must be made
in order to pick the applicable equation. The degeneracy is determined by the position of
the Fermi level. Since the Fermi level varies as a function of temperature (as well as
doping), it is possible for a particular equation to be good in one temperature range and
not good in another. Normally, a semiconductor must be doped to 1018 or 1019 centi-~
meter-3 before it becomes degenerate. Therefore, the procedure is to estimate the max-
imum value of the Fermi level. And if it is several kT below the conduction band, the
semiconductor is always nondegenerate, If it is at or above the conduction band, the
Fermi level must be calculated more carefully as a function of temperature.

Blakemore's variable 17 as a function of temperature yields the degeneracy informa-
tion. Even for a compensated semiconductor, Mm and T, (where Tm is the tempera~ -
ture at which 7 = nm) can be determined reasonably well by substituting Nd - Na into Z
(eq. (46)) and then reading T and 7, from figures 8 and 9. If equation (52) is found
to be unusable, equation (50) or (51) must be utilized.

Hall extrinsic data. - For this discussion it is assumed that the semiconductors in
question are nondegenerate. However, much of the material is still applicable to the de-
generate cases.

Blakemore (ref. 2) and Putley (ref. 1) both outline a method of interpreting experi-
mental Hall coefficient data which Blakemore calls one of the most popular approaches. -
The method starts with a rearranged form of equation (52)

n (n_ +N_) E
L) - a = BNC exp --—g (64)
(Ny- N, -n) kT

where the model for partly compensated donor impurities is used. The effects of excited
impurity levels are neglected. Notice that the right-hand side depends on the character
of the impurities and on the temperature; but not on the acceptor or donor densities. The
first problem is to find values of Na’ Nd, and E d which satisfy the equation at all tem-
peratures. Each of these parameters can be estimated. Then, by iteration the param-
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eters are adjusted until the calculated carrier concentration that results (using Na.’ Nd’
and E d) matches as closely as required with the experimental carrier concentration data.
Blakemore states that the method of least squares applied to equation (64) will give those
values of Na and Nd which give the best fit over the entire temperature range. Satis-
factory results are obtained by using a repetitive method of varying the parameters until
the calculated results match the experimental data (private communication from Robert P.
Ulman, formerly of Lewis Research Center and now at the Addressograph-Multigraph
Corp. of Cleveland, Ohio). These curve-fitting procedures are time consuming, and dig-
ital computers are helpful in doing these calculations.

There are several ways of obtaining the estimates of the parameters in question (as-
suming an n-type semiconductor). Either B or m* (which is in the equation for N c)
must be known independently. That is, if m;'; is known by some other type of measure-
ment, such as cyclotron resonance, Nc can be calculated. The quantity Nd - Na can be
estimated from the plateau (exhaustion region) of the curve of Inn o against reciprocal
temperature. Donor ionization energy E d is obtained from the slope of the In n,
against 1/T curve at low temperature (see eqs. (53) and (54)). Finally, N, /B can be
calculated by using equation (54) if n o 2t an arbitrary low temperature is known.

Putley suggests two methods for estimating Ny and N,. In the first method the in-
tercepts of the low-temperature part of the plot of 1In n, against 1/T, where equa-
tion (54) is valid, are measured. This allows (N a- Na) /Na to be determined. Then,
from the exhaustion region of the same plot, N d- Na is estimated and, therefore, values
of Nd and Na are obtained, In the second method, the curyve at low temperature in fig-
ure 15 is extrapolated backwards using equation (54) until it intercepts the exhaustion line.
At the temperature corresponding to the point of intersection, the left-hand side of equa-
tion (64) equals Na' By estimating Nd - Na from the exhaustion region, Nd and Na
can be determined.

Often there will occur plots of In n, against 1/T in which there is more than one
dip in the curve. This situation might correspond to semiconductors with two or more
levels of either donor or acceptor impurities, or to impurities which can accommodate
more than one electron, or to structural defects of the lattice of the semiconductor.

When this is the case, the generalized equation (56) must be used in the interpretation of
the data. Putley includes an excellent discussion of this problem (ref. 1, section 4. 8).

Because of the temperature dependence of the quantities N c and Nv’ the plot of
In n, against 1/T will not be a perfectly straight line at low temperature. This makes
the calculation of the impurity ionization energy E d inaccurate. However, if the tem-
perature dependence of N c is plotted on the ordinate along with n,, the slope at low
temperatures will be directly proportional to E dr For example, assume that conditions
are such that equation (54) holds at low temperatures. Notice that Nc is proportional
to T3/ 2. Therefore, ln(n0 /T3 2) can be plotted against 1/T to obtain a curve with a
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Natural fogarithm of electron carrier concentration, In ny, cm™3

Inverse temperature, 1/T, K

Figure 15, - Method of determining concentration of donor and acceptor impurities Ny and
N, of compensated semiconductor.

slope truly proportional to E a r

It must be emphasized that the interpretation of the data need not follow the pattern
outlined herein. There are other variations which have been used and published. For ex-
ample, van Daal, Knippenberg, and Wasscher (ref. 17) have developed a method for anal-
yzing Hall data which extrapolates the measured curves to the region of complete exhaus-
tion. This method could be valuable in those cases where data could not be taken at suf-
ficiently high temperatures.

The fact that impurity ionization energy becomes smaller as the impurity density is
increased was shown by Pearson and Bardeen (ref. 18). At a certain density, character-
istic of the host lattice and the impurity type, the impurity ionization energy actually be-
comes zero. The variation in Ea as a function of ‘.Na is shown in figure 16. Care must
be taken when determining the impurity ionization energy when the doping is high.

Resistivity extrinsic data. - Little has been said about the interpretation of resistiv-
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Figure 16, - Effects of boron concentration on boron acceptor ionization energy in silicon
according fo measurements of Pearson and Bardeen {ref. 18).

1ty against temperature data because only the impurity ionization energy can be deter-
mined from it. However, resistivity is simpler to measure than the Hall coefficient.
Therefore, in the case where the Hall data (In n, against 1/T curve) does not straighten
out at low temperatures and, thus, the ionization energy is still in doubt, resistivity data
may be very useful. In this case, since 1/p =n o34 n (for n-type) and the mobility is not
an exponential function of T at low temperatures, the exponential exp(-E d /KT) in the
carrier concentration term n o dominates the behavior. A plot of lnp against 1/T
yields the ionization level. Resistivity measurements are then emphasized at lower tem~
peratures, and a more accurate determination of the impurity ionization energy may be
possible.

Resistivity, as well as the Hall coefficient, is required to calculate the Hall mobility.
A knowledge of mobility is important for device design.

Intrinsic Data

When a semiconductor is intrinsic, n o= Po =10y and the equations of resistivity and
Hall coefficient when both types of carriers are present reduce to
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== anyley +up) (65)
o)
and
b, = U
=% _p 1 (66)
ang py+ by

The equations are altered from the extrinsic case by the inclusion of sums and differences
of the electron and hole mobilities. For example, the measured Hall coefficient cannot
be directly related to the carrier concentration, as in the extrinsic case. Thus, the car-
rier concentration cannot be calculated unless the mobilities are known. However, the
band gap energy E g appears in the exponential term of equation (62) for the intrinsic
carrier concentration. ' This term dominates the temperature dependence of the mobili-
ties, and thus the slopes of the plots of In RH against 1/T or lnp against 1/T

(fig. 17) give the band gap energy. Once again, as in the extrinsic case, it may be easier
to measure resistivity at the temperature extreme (i.e., high temperature) of intrinsic
conduction. The band gap energy E e usually is a function of temperature (ref. 2). But if
it is assumed to be a linear function of temperature,

=FE -
Eg g0 aT (67)

‘the exponential term in the carrier coneentration equation becomes a constant times
exp(-E g0 /2kT). Therefore, the plots in figure 17 yield the band gap at 0 K. The band
-= ig not necessarily a linear function of temperature, therefore the plots still appear
<urved in these cases.
i the Hall coefficient is divided by the resistivity, the Hall mobility is the result.
 .ntrinsic conduction it becomes

Ry = oty - 1y (68)

Interpretati'on of Data Near Intrinsic Conduction

The Hall and resistivity curves as a function of temperature take on unexpected
shapes as they approach the intrinsic region. These shapes are dependent on whether the
semiconductor is n- or p-type and on the semiconductor mobility ratio b=p n / up. i is
possible that the intrinsic data will be misinterpreted if these shapes are ignored. The
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Figure 17. - Variation of natural logarithms:of Hall coefficient and resistivity with inverse temperature for three mobilit
ratios, b<1.46, 1.46<0<3.7, and b>3,7. Dashed lines indicate true intrinsic slopes. g

general shapes of the curves are shown in figure 17. Dunlap (ref. 19) first discussed
this problem, but Hunter (ref. 9) describes it in more detail.

There are two prominent features of the curves in figure 17. The first is that the
RH for p-type semiconductors usually changes sign as the intrinsic region is approached.
This feature is expressed in equation (6), since pu n is usually greater than p_. The ‘
second is that RH and p for some cases at some temperatures are greater than their
intrinsic values (shown by the dashed line). This is known as overshoot. Thus, the re-
sistivity for p-type semiconductors for all mobility ratios is greater than the intrinsic
resistivity in a certain temperature range. As the temperature increases, the resistivity
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approaches its intrinsic value. It is now obvious that if measurements of RH and p are
not made at temperatures high enough to go beyond the overshoot region, the measured
slope will be incorrect. And, therefore, the band gap energy will be incorrect.

SPECIFYING TEMPERATURE RANGE OF DATA

The Hall coefficient and resistivity must be measured throughout certain specified
temperature ranges. The informative parts of the curves of n, and p as a function of
1/T appear only at characteristic temperatures. Therefore, in order to ensure that
enough data are collected, the required temperature range must be estimated beforehand,
This is also likely to be important in terms of cost. For example, if the electrical prop-
erties of a specimen need not be measured below liquid-nitrogen temperatures (77 K), the
large cost and complications of a liquid-helium cryostat can be avoided.

At low temperatures the limiting factor is the ionization energy of the impurities.
The plot of Inn o against 1/T must have a constant slope at low temperatures. As the
energy levels of the impurities lie closer to the conduction band, the lowest temperature
at which data must be taken decreases.

The high-temperature limit is dependent on what is to be obtained. If the band gap of
the basic material is to be measured thermally, the data must extend well into the intrin-
sic region. To measure the doping concentrations of a particular piece of semiconductor,
the measurement of the carrier concentration (i. e., Hall coefficient) must extend to the
exhaustion region. There all the impurities are ionized and the carrier concentration is
constant with temperature,

Obviously, the low- and high-temperature limits are peculiar to each semiconductor
material. Therefore, the method of specifying the temperature range will involve search-
ing the literature for information about the band gap and ionization energies and compar-
ing this with known semiconductors, such as silicon and germanium. Measurements on
these semiconductors must be as low as liquid-helium temperatures.

In the case of a wide-band-gap semiconductor, such as silicon carbide, the tempera-
ture range may be shifted upwards and expanded. Since the band gap is approximately
3 electronvolts for hexagonal silicon carbide, the plateau region of carrier concentration
data will probably be above room temperature. Previous measurements made at the
Westinghouse Research Laboratory in Pittsburgh indicate that temperatures of at least .
550 to 600 K are required to obtain the necessary extrinsic data. This is nearing the in-
trinsic region, which occurs at temperatures above 850 K (for doping levels of about
1017 c.m_3). |

The low-temperature limit for silicon carbide can be as low as liquid-helium tem-
peratures, but, practically speaking, liquid-nitrogen temperatures are sufficient. An
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impurity energy level may be very close to a band edge and thus become ionized at ex-
tremely low temperatures. However, the probability of this happening in silicon carbide
is probably less than in silicon (which has a band gap about one-third that of silicon car-
bide). Therefore, for the example of silicon carbide, the temperature range of interest
would be from liquid-nitrogen temperatures to greater than 550 K. Probably the upper
limit should be extended to 850 K to make certain the exhaustion region is reached. For
doping levels greater than about 1017 centimeter-3, the upper limit may need to be in-
creased even further.

CONCLUSIONS

The measurement and interpretation of the Hall coefficient and resistivity of semi-
conductors were outlined, and the basic equations of carrier concentration, obtained from
other sources, were summarized. Some known methods of interpreting the experimental
data by use of these basic carrier concentration equations were then discussed.

In considering the applicability of the measurements to both basic materials research
and device design, it was pointed out that the energy levels of the impurities, the band
gap energy, and the mobility are valuable to the materials researcher. For the device
designer, the mobility, the impurity ionization energies, and the doping concentrations
are important. All of these quantities are obtained from an analysis of the Hall and re-
sistivity data. '

Two methods of measuring the Hall coefficient and resistivity were briefly described.
The van der Pauw method is favored because in that method the semiconductor sample
need not be of a particular shape. This is advantageous in the case where only small

" samples are available,

The mobility of semiconductors was shown to be related to an energy-ave;faged re-
laxation time which is a characteristic of a particular scattering process and a specific
semiconductor material. The results of the derivation of the relation between mobility
and relaxation time were given for the simplest case, where the constant-energy surfaces
were spherical and there was only one energy minimum or maximum. The results were
extended to the cases where the constant-energy surfaces were nonspherical and there
were niultiple energy minimums or maximums, Although no relaxation time calculations
for specific scattering processes were given, the different kinds of scattering were qual-
itatively discussed. The factor @ which relates the Hall coefficient to the carrier
concentration resulted from the same type of derivation.

The equations for charge carrier concentration were developed for both extrinsic and
intrinsic conduction, The extrinsic equations were found to be primarily functions of
temperature, impurity concentrations, and the impurity ionization energy. The intrinsic
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equation was a function of temperature and the band gap energy. The extrinsic equations
were found to be modified by different types of dopmg, by inclusion of excited states of
the doping impurities, and by degeneracy. 2 ; — i

- This set of equations for extrinsic and intrinsic conductlon was thenused as the basis
for developing methods of interpreting the measured experimental data. It was found that
the parameters of the equatmns could be estimated with varymg degrees of accuracy from
the plot of In ng against 1/T where n, is the equ111br1um concentration of electrons -
and T istemperature. By a method of iterative calculations, the estimated parameters
were varied until the calculated results fit the exper1menta1 data curve, It was shown that
the resistivity plot may helpto obtain more accurate values of the unpur1ty ionization en-
ergy and the band gap energy at extremely low and high temperatures, respectively.

The shape of the curves of the Hall coefficient and resistivity against reciprocal tem-
perature near the point Where intrinsic conduction begms was illustrated. It was found
that knowledge of these curves was necessary for correct 1nterpretat10n of intrinsic data.

The temperature range over which the Hall coefficient and res1st1v1ty must be meas-
ured in order to use the methods presented in this report was discussed. Measurements
must be collected at a temperature low enough that the slope of the In ng ~against 1 /T
curve becomes constant. At high temperatures the same curve must level off at a con-~
stant n (the exhaust region) - If intrinsic properties of the semiconductor such as band
gap energy, are wanted the measurement must extend well above the temperature where
the semiconductor becomes 1ntr1ns1c '

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland Ohio, September 27, 1968,
120-27-01- -25-22,
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t APPENDIX - SYMBOLS

defined function not dependent
on temperature

magnetic field, tesla
conducti?vity mbbility ratio,
bn/bp

effective mass ratio, mi/m:f,

N
energy, eV
acceptor ionization energy, eV -

energy of bottom of conduction ‘

band, eV
donor ionization energy, eV

donor ionization energy of
donor of jth kind, eV

Fermi level, eV
band gap energy, eV

Eg at T=0 for iinear varia~
tion of Eg, eV

energy difference between
ground level and rih level,
eV

energy of top of valence band,
ev

components of electric field,
Vem”™

particular Fermi-Dirac in-
tegral

Fermi-Dirac distribution
function

correction factor invvan der
Pauw's resistivity equation

g(E)

Jx’ Jy’ Jz

=

density of states per unit en-
ergy interval in conduction
band, em™3 ev” :
Planck constant, 6. 63x10™34
J sec

current, A

components of‘ current density,
A em™2

Boltzmann constant,
1.38x10723 5 x~1

wave vector {(components

lg(, ky, kz make up
E—-space), m 1

(effective) length of bridge-
shaped crystal sample, cm

components of effective mass
tensor, kg
effective mass of electrons, kg

mass of free electrons,
9.11x10"31 kg

effective mass of holes, kg

concentration of acceptor im-
purities, cm™S

effective density of states in
conduction band, em™3

concentration of donor im-
purities, cm™3

concentration of ionized donor
impurities, cm™3

concentration of donor im-

purities of jth kind, em™3



dn

w0

concentration of neutral. -
donor impurities, cm™3

effective density of states in
valence band, cm™3

intrinsic concentration of
‘electrons and holes, cm™3
equilibrium concentration of

electrons, cm™S

equilibrium concentration of
holes, cm™3

electronic charge,
1.60x1071% ¢

ratio of voltage measured
across contacts d and ¢
with current flowing into
a and out b (other such
ratios defined similarly),
ohms

Hall coefficient, em ¢71

summation of effects of en-
ergy of excited state of
impurity atoms

temperature, K

temperature where 7 = M?
K

thickness of crystal sample,
cm

voltage drop from C to E,
\'A

Hall x}oltage, \4

X component of average

drift velocity of electron,
cm sec”

width of bridge-shaped crys-
tal sample, cm

defined ffﬁnéfibﬁ not dependent
on temperature, cm™3
oV

constant relating Hall coef-
ficient and carrier concen-
tration

impurity level spin degener-
acy

impurity level spin degener-
acy of impurity of jth kind

impurity level spin degener-
acy of rth ‘level

defined variable, (E - E c)/kT

defined variable, E 4/kT

defined variable, E di /KT

defined variable, Eq/kT

defined variable, E . /KT

defined variable, E /KT

defined variable, (E ;- E c)/kT
maximum of 7

conductivity mobility,

em? v see

2 1

Hall mobility, cm v1sec
components of conductivity

- mobility, em? v sec”
electron mobility,
em? vL sec™

hole mobility, em? vl gee™!
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p resistivity, 2/cm T relaxation time, sec

o electrical conductivity, ot cm'1 (T) relaxation time averaged over en~

ergy, sec
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